

Privex Django Lock Manager (django-lockmgr) documentation

[image: Privex Logo]

 [https://www.privex.io/]Welcome to the documentation for Privex’s Django Lock Manager [https://github.com/Privex/django-lockmgr] - a small, open source Python 3 package
for Django, designed to provide simple, frustration free locks in your Django application, without requiring
any additional services like Redis / Memcached.

This documentation is automatically kept up to date by ReadTheDocs, as it is automatically re-built each time
a new commit is pushed to the Github Project [https://github.com/Privex/python-helpers]

Contents

	Privex Django Lock Manager (django-lockmgr) documentation

	Quick install

	All Documentation

	Indices and tables

Quick install

Installing with Pipenv [https://pipenv.kennethreitz.org/en/latest/] (recommended)

pipenv install django-lockmgr

Installing with standard pip3

pip3 install django-lockmgr

Add lockmgr to your INSTALLED_APPS

INSTALLED_APPS = [
 'django.contrib.admin.apps.SimpleAdminConfig',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 # ...
 'lockmgr'
]

Run the migrations

./manage.py migrate lockmgr

All Documentation

Main:

	Privex Django Lock Manager (django-lockmgr) documentation

	Installing Django Lock Manager
	Download and install from PyPi using pipenv / pip (recommended)

	(Alternative) Manual install from Git

	Post-installation

Code Documentation:

	Using Django Lock Manager
	Using the context manager LockMgr (recommended)

	Using the raw module lock management functions

	Extra documentation

	API Docs (lockmgr.lockmgr)
	clean_locks

	get_lock

	is_locked

	renew_lock

	set_lock

	unlock

	LockMgr
	Methods

	Database Models (lockmgr.models)
	default_lock_expiry

	Lock
	Methods

	Attributes

	Django Management Commands
	clear_lock
	Command

	list_locks
	Command

	reset_locks
	Command

	set_lock
	Command

Unit Testing

	How to use the unit tests
	Testing pre-requisites

	Running the tests via Django Test Runner / Django-Nose

	Unit Test List / Overview
	tests.test_lockmgr
	TestLockMgrModule
	Methods
	test_getlock_clean

	test_getlock_unlock

	test_is_locked

	test_lock_expiry

	test_lock_no_expiry

	test_lock_zero_expiry

	Attributes

	tests.test_lockmgr_class
	TestLockMgrClass
	Methods
	test_lock_wait

	test_lock_wait_timeout

	test_lockmgr

	test_lockmgr_except

	Attributes

	tests.test_renew
	TestLockRenew
	Methods
	test_lockmgr_renew_expired

	test_lockmgr_renew_main

	test_renew_existing_name

	test_renew_existing_name_add_time

	test_renew_existing_object_add_time

	test_renew_lock_object

	test_renew_non_existing_name

	test_renew_non_existing_name_create

	test_renew_shorter_expiration

	test_renew_shorter_expiration_add_time

	Attributes

Indices and tables

	Index

	Module Index

	Search Page

Installing Django Lock Manager

Download and install from PyPi using pipenv / pip (recommended)

Installing with Pipenv [https://pipenv.kennethreitz.org/en/latest/] (recommended)

pipenv install django-lockmgr

Installing with standard pip3

pip3 install django-lockmgr

(Alternative) Manual install from Git

You may wish to use the alternative installation methods if:

	You need a feature / fix from the Git repo which hasn’t yet released as a versioned PyPi package

	You need to install django-lockmgr on a system which has no network connection

	You don’t trust / can’t access PyPi

	For some reason you can’t use pip or pipenv

Option 1 - Use pip to install straight from Github

pip3 install git+https://github.com/Privex/django-lockmgr

Option 2 - Clone and install manually

Clone the repository from Github
git clone https://github.com/Privex/django-lockmgr
cd django-lockmgr

RECOMMENDED MANUAL INSTALL METHOD
Use pip to install the source code
pip3 install .

ALTERNATIVE MANUAL INSTALL METHOD
If you don't have pip, or have issues with installing using it, then you can use setuptools instead.
python3 setup.py install

Post-installation

Django Lock Manager requires very little configuration after installation. Simply add it to your
INSTALLED_APPS, and run ./manage.py migrate lockmgr to create the database tables.

Add lockmgr to your INSTALLED_APPS

INSTALLED_APPS = [
 'django.contrib.admin.apps.SimpleAdminConfig',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 # ...
 'lockmgr'
]

Run the migrations

./manage.py migrate lockmgr

Using Django Lock Manager

This is the main module file for Django Lock Manager [https://github.com/Privex/django-lockmgr] (django-lockmgr) and contains lock management functions/classes.

There are two ways you can use Django Lock Manager:

	The first (and recommended) way, is to use the context manager class LockMgr.

	The second (lower level) way, is to use the lock functions directly, such as get_lock(), unlock(),
and set_lock().

Using the context manager LockMgr (recommended)

LockMgr is a wrapper class for the various locking functions in this module, e.g. get_lock(), and
is designed to be used as a context manager, i.e. using a with statement.

It’s strongly recommended to use django-lockmgr via the LockMgr context manager unless you have a specific
need for manual lock management, as it greatly reduces the risk of “stuck locks” due to human error, or
incorrect exception handling.

By using django-lockmgr via this context manager, it ensures you don’t forget to release any locks after
you’ve finished with the resources you were using.

Not only that, but it also ensures in the event of an exception, or an unexpected crash of your application,
that your locks will usually be safely released by LockMgr.__exit__().

>>> from lockmgr.lockmgr import LockMgr
>>> try:
... with LockMgr('mylock', 60) as l:
... print('Doing stuff with mylock locked.')
... # Obtain an additional lock for 'otherlock' - will use the same expiry as mylock
... # Since ``ret`` is set to True, it will return a bool instead of raising Lock
... if l.lock('otherlock', ret=True):
... print('Now otherlock is locked...')
... l.unlock('otherlock')
... else:
... print('Not doing stuff because otherlock is already locked...')
... # If you're getting close to your lock's expiry (timeout), you can call '.renew()' to add an extra
... # 2 minutes to your expiry time. Or manually specify the expiry with 'expires=120'
... sleep(50)
... l.renew(expires=30) # Add an extra 30 seconds to the expiration of 'mylock'
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))

Using the raw module lock management functions

In some cases, it might not be suitable to use context management due to a complex application flow, such as
the use of threading / multiprocessing, sharing the locks across other applications, etc.

If you need to, you can access the lower level lock management functions by importing this module, or the
individual functions.

Here’s some examples:

First, let’s get a lock using get_lock() that expires in 10 seconds, and wait a few seconds.

>>> from lockmgr import lockmgr
>>> lk = lockmgr.get_lock('my_app:somelock', expires=10)
>>> sleep(5)

Since our lock is going to expire soon, we’ll use renew_lock() to reset the expiration time to 20 seconds
from now.

>>> lk = lockmgr.renew_lock(lk, 20) # Change the expiry time to 20 seconds from now
>>> sleep(15)

Using is_locked(), we can confirm that the lock ``my_app:somelock` is still locked:

>>> lockmgr.is_locked('my_app:somelock') # 15 seconds later, the lock is still locked
True

Finally, we use unlock() to release the lock. You can pass either a string lock name such as
my_app:somelock, or you can also pass a Lock database object i.e. the result from get_lock().
Use whichever parameter type you prefer, it doesn’t make a difference.

>>> lockmgr.unlock(lk)

Extra documentation

This is not the end of the documentation, this is only the beginning! :)

You’ll find detailed documentation on the pages for each function / class / method. Most things are documented
using PyDoc, which means you can view usage information straight from most Python IDEs (e.g. PyCharm and VS Code),
as well as via the help() function inside of the Python REPL.

Browsable HTML API docs

We have online documentation [https://django-lockmgr.readthedocs.io/lockmgr/lockmgr.lockmgr.html#api-docs-lockmgr-lockmgr] for this module, which shows the usage information for each individual function and
class method in this module.

Python REPL help

Using the help() function, you can view help on modules, classes, functions and more straight from the REPL:

$./manage.py shell
Python 3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from lockmgr import lockmgr
>>> help(lockmgr.get_lock)

Below is a screenshot showing the REPL help page for get_lock()

[image: Screenshot of REPL help]
 [https://cdn.privex.io/github/django-lockmgr/repl_help.png]
	
exception lockmgr.lockmgr.LockFail(*args, lock: lockmgr.models.Lock = None)

	Raised when locks were requested, with failure/rollback if any already existed.

	
class lockmgr.lockmgr.LockMgr(name, expires: Optional[int] = 600, locked_by=None, lock_process=None, wait: int = None)

	LockMgr is a wrapper class for the various locking functions in this module, e.g. get_lock(), and
is designed to be used as a context manager, i.e. using a with statement.

By using django-lockmgr via this context manager, it ensures you don’t forget to release any locks after
you’ve finished with the resources you were using.

Not only that, but it also ensures in the event of an exception, or an unexpected crash of your application,
that your locks will usually be safely released by __exit__().

Usage:

Using a with statement, create a LockMgr for mylock with automatic expiration if held for more than
60 seconds. After the with statement is completed, all locks created will be removed.

>>> try:
... with LockMgr('mylock', 60) as l:
... print('Doing stuff with mylock locked.')
... # Obtain an additional lock for 'otherlock' - will use the same expiry as mylock
... # Since ``ret`` is set to True, it will return a bool instead of raising Lock
... if l.lock('otherlock', ret=True):
... print('Now otherlock is locked...')
... l.unlock('otherlock')
... else:
... print('Not doing stuff because otherlock is already locked...')
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))

You can also use renew() to request more time / re-create the lock if you’re close to, or have already
exceeded the lock expiration time (defaults to 10 mins).

>>> try:
... with LockMgr('mylock', 60) as l:
... print('Doing stuff with mylock locked.')
... sleep(50)
... l.renew(expires=30) # Add an additional 30 seconds of time to the lock expiration
... sleep(50) # It's now been 100 seconds. 'mylock' should be expired.
... # We can still renew an expired lock when using LockMgr. It will simply re-create the lock.
... l.renew() # Add an additional 120 seconds (default) of time to the lock expiration
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))

	
expires = None

	The user supplied expiration time in seconds

	
lock(name, expires: int = None, ret: bool = False, wait: int = None)

	Obtains a lock using get_lock() and appends it to _locks if successful.

If the argument ret is False (default), it will raise Locked if the lock couldn’t be obtained.

Otherwise, if ret is True, it will simply return False if the requested lock name is already locked.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A unique name to identify your lock

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600 sec) How long before this lock is considered stale and forcefully released?

	ret (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) Return False if locked, instead of raising Locked.

	wait (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) Retry obtaining the lock for this many seconds. MUST be divisible by 5.
If not empty, will retry obtaining the lock every 5 seconds until wait seconds

	Raises

	Locked – If the requested lock name is already locked elsewhere, Locked will be raised

	Return bool success

	True if successful. If ret is true then will also return False on failure.

	
lock_process = None

	Usually None, but sometimes may represent the process ID this lock belongs to

	
locked_by = None

	Who/what created this lock - usually the hostname unless manually specified

	
main_lock = None

	The Lock object created at the start of a with LockManager('xyz') statement

	
name = None

	The lock name (from the constructor)

	
renew(lock: Union[str, lockmgr.models.Lock] = None, expires: int = 120, add_time: bool = True, **kwargs) → lockmgr.models.Lock

	Add expires seconds to the lock expiry time of lock. If lock isn’t specified, will default to
the class instance’s original lock main_lock

Alias for renew_lock() - but with add_time and create set to True by default,
instead of False.

With no arguments specified, this method will renew the main lock of the class main_lock
for an additional 2 minutes (or if the lock is already expired, will re-create it with 2 min expiry).

Example usage:

>>> with LockMgr('mylock', expires=30) as l:
... sleep(10)
... l.renew(expires=60) # Add 60 seconds more time to 'mylock' expiration
... l.main_lock.refresh_from_db()
... print(l.main_lock.expires_seconds) # Output: 79
... l.renew('lockx', expires=60) # Add 60 seconds more time to 'lockx' expiration

	Parameters

	
	lock (Lock) – Name of the lock to renew

	lock – A Lock object to renew

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 120) If not add_time, then this is the new expiration time in seconds from now.
If add_time, then this many seconds will be added to the expiration time of the lock.

	add_time (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, then expires seconds will be added to the existing
lock expiration time, instead of setting the expiration time to now + expires

Extra Keyword Arguments

	Key bool create

	(Default: True) If True, then create a new lock if it doesn’t exist / already expired

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int lock_process

	(Optional) The process ID requesting the lock

Exceptions

	Raises

	LockNotFound – Raised if the requested lock doesn’t exist / is already expired and create is False.

	Return Lock lock

	The Lock object which was renewed

	
unlock(lock: Union[lockmgr.models.Lock, str] = None)

	Alias for unlock()

	
wait = None

	How long to wait for a lock before giving up. If this is None then waiting will be disabled

	
exception lockmgr.lockmgr.LockNotFound

	Raised when a requested lock doesn’t exist

	
class lockmgr.lockmgr.LockSetResult(**kwargs)

	

	
class lockmgr.lockmgr.LockSetStatus(**kwargs)

	

	
exception lockmgr.lockmgr.Locked

	Raised when a lock already exists with the given name

	
lockmgr.lockmgr.clean_locks()

	Deletes expired Lock objects.

	
lockmgr.lockmgr.get_lock(name, expires: Optional[int] = 600, locked_by: str = None, lock_process: int = None) → lockmgr.models.Lock

	READ THIS: It’s best to use LockMgr as it automatically handles locking and unlocking using with.

Calls clean_locks() to remove any expired locks, checks for any existing locks using a FOR UPDATE
transaction, then attempts to obtain a lock using the Lock model payments.models.Lock

If name is already locked, then Locked will be raised.

Otherwise, if it was successfully locked, a payments.models.Lock object for the requested lock name
will be returned.

Usage:

>>> try: # Obtain a lock on 'mylock', with an automatic expiry of 60 seconds.
... mylock = get_lock('mylock', 60)
... print('Successfully locked mylock')
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))
... finally: # Regardless of whether there was an exception or not, remember to remove the lock!
... print('Removing lock on "mylock"')
... unlock(mylock)

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A unique name to identify your lock

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600 sec) How long before this lock is considered stale and forcefully released?
Set this to 0 for a lock which will never expire (must manually call unlock())

	locked_by (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (Default: system hostname) What server/app is trying to obtain this lock?

	lock_process (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) The process ID requesting the lock

	Raises

	Locked – If the requested lock name is already locked elsewhere, Locked will be raised

	Return Lock lock

	If successfully locked, will return the payments.models.Lock of the requested lock.

	
lockmgr.lockmgr.is_locked(name: Union[lockmgr.models.Lock, str]) → bool

	Cleans expired locks, then returns True if the given lock key name exists, otherwise False

	
lockmgr.lockmgr.renew_lock(lock: Union[str, lockmgr.models.Lock], expires: int = 600, add_time: bool = False, **kwargs) → lockmgr.models.Lock

	Renew an existing lock for more expiry time.

Note: This function will NOT reduce a lock’s expiry time, only lengthen. If add_time is False,
and the new expiration time expires is shorter than the lock’s existing expiration time, then the lock’s
expiry time will be left untouched.

Example - Renew an existing lock:

>>> lk = get_lock('my_app:somelock', expires=10)
>>> sleep(5)
>>> lk = renew_lock(lk, 20) # Change the expiry time to 20 seconds from now
>>> sleep(15)
>>> is_locked('my_app:somelock') # 15 seconds later, the lock is still locked
True

Example - Try to renew, but get a new lock if it’s already been released:

>>> lk = get_lock('my_app:somelock', expires=5)
>>> sleep(10)
>>> lk = renew_lock(lk, 20, create=True) # If the lock is expired/non-existant, make a new lock
>>> sleep(15)
>>> is_locked('my_app:somelock') # 15 seconds later, the lock is still locked
True

	Parameters

	
	lock (Lock) – Name of the lock to renew

	lock – A Lock object to renew

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600) If not add_time, then this is the new expiration time in seconds from now.
If add_time, then this many seconds will be added to the expiration time of the lock.

	add_time (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) If True, then expires seconds will be added to the existing
lock expiration time, instead of setting the expiration time to now + expires

	Key bool create

	(Default: False) If True, then create a new lock if it doesn’t exist / already expired.

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int lock_process

	(Optional) The process ID requesting the lock

	Raises

	LockNotFound – Raised if the requested lock doesn’t exist / is already expired and create is False.

	Return Lock lock

	The Lock object which was renewed

	
lockmgr.lockmgr.set_lock(*locks, timeout=600, fail=False, renew=True, create=True, **options) → lockmgr.lockmgr.LockSetResult

	This function is for advanced users, offering multiple lock creation, renewing, along with “all or nothing”
locking with database rollback via the argument fail.

Unlike other lock management functions, set_lock returns a LockSetResult object, which is designed
to allow you to see clearly as to what locks were created, renewed, or skipped.

Example Usage

Let’s set two locks, hello and world.

>>> res = set_lock('hello', 'world')
>>> res['locks']
[<Lock name='hello' locked_by='example.org' locked_until='2019-11-22 02:01:55.439390+00:00'>,
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 02:01:55.442734+00:00'>]
>>> res['counts']
{'created': 2, 'renewed': 0, 'skip_create': 0, 'skip_renew': 0}

If we run set_lock again with the same arguments, we’ll still get the locks list, but we’ll see the counts
show that they were renewed instead of created.

>>> x = set_lock('hello', 'world')
>>> x['locks']
[<Lock name='hello' locked_by='example.org' locked_until='2019-11-22 02:03:06.762620+00:00'>,
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 02:03:06.766804+00:00'>]
>>> x['counts']
{'created': 0, 'renewed': 2, 'skip_create': 0, 'skip_renew': 0}

Since the result is an object, you can also access attributes via dot notation, as well as dict-like notation.

We can see inside of the statuses list - the action that was taken on each lock we specified, so we can see
what locks were created, renewed, or skipped etc.

>>> x.statuses[0]
('hello', {'was_locked': True, 'status': 'extend', 'locked': True})
>>> x.statuses[1]
('world', {'was_locked': True, 'status': 'extend', 'locked': True})

	Parameters

	
	locks (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – One or more lock names, as positional arguments, to create or renew.

	timeout (int [https://docs.python.org/3.6/library/functions.html#int]) – On existing locks, update locked_until to now + timeout (seconds)

	fail (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) If True, all lock creations will be rolled back if an existing lock
is encountered, and LockFail will be raised.

	renew (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, any existing locks in locks will be renewed to
now + timeout (seconds). If False, existing locks will just be skipped.

	create (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, any names in locks which aren’t yet locked, will have a lock
created for them, with their expiry set to timeout seconds from now.

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int process_id

	(Optional) The process ID requesting the lock

	Return LockSetResult results

	A LockSetResult object containing the results of the set_lock operation.

	
lockmgr.lockmgr.unlock(lock: Union[lockmgr.models.Lock, str])

	Releases a given lock - either specified as a string name, or as a payments.models.Lock object.

Usage:

>>> mylock = get_lock('mylock', expires=60)
>>> unlock('mylock') # Delete the lock by name
>>> unlock(mylock) # Or by Lock object.

	Parameters

	
	lock (Lock) – The name of the lock to release

	lock – A Lock object to release

API Docs (lockmgr.lockmgr)

Functions

	clean_locks()

	Deletes expired Lock objects.

	get_lock(name[, expires, locked_by, …])

	READ THIS: It’s best to use LockMgr as it automatically handles locking and unlocking using with.

	is_locked(name)

	Cleans expired locks, then returns True if the given lock key name exists, otherwise False

	renew_lock(lock[, expires, add_time])

	Renew an existing lock for more expiry time.

	set_lock(*locks[, timeout, fail, renew, create])

	This function is for advanced users, offering multiple lock creation, renewing, along with “all or nothing” locking with database rollback via the argument fail.

	unlock(lock)

	Releases a given lock - either specified as a string name, or as a payments.models.Lock object.

Classes

	LockMgr(name[, expires, locked_by, …])

	LockMgr is a wrapper class for the various locking functions in this module, e.g.

Exceptions

	LockNotFound

	Raised when a requested lock doesn’t exist

	Locked

	Raised when a lock already exists with the given name

clean_locks

	
lockmgr.lockmgr.clean_locks()

	Deletes expired Lock objects.

get_lock

	
lockmgr.lockmgr.get_lock(name, expires: Optional[int] = 600, locked_by: str = None, lock_process: int = None) → lockmgr.models.Lock

	READ THIS: It’s best to use LockMgr as it automatically handles locking and unlocking using with.

Calls clean_locks() to remove any expired locks, checks for any existing locks using a FOR UPDATE
transaction, then attempts to obtain a lock using the Lock model payments.models.Lock

If name is already locked, then Locked will be raised.

Otherwise, if it was successfully locked, a payments.models.Lock object for the requested lock name
will be returned.

Usage:

>>> try: # Obtain a lock on 'mylock', with an automatic expiry of 60 seconds.
... mylock = get_lock('mylock', 60)
... print('Successfully locked mylock')
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))
... finally: # Regardless of whether there was an exception or not, remember to remove the lock!
... print('Removing lock on "mylock"')
... unlock(mylock)

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A unique name to identify your lock

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600 sec) How long before this lock is considered stale and forcefully released?
Set this to 0 for a lock which will never expire (must manually call unlock())

	locked_by (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (Default: system hostname) What server/app is trying to obtain this lock?

	lock_process (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) The process ID requesting the lock

	Raises

	Locked – If the requested lock name is already locked elsewhere, Locked will be raised

	Return Lock lock

	If successfully locked, will return the payments.models.Lock of the requested lock.

is_locked

	
lockmgr.lockmgr.is_locked(name: Union[lockmgr.models.Lock, str]) → bool

	Cleans expired locks, then returns True if the given lock key name exists, otherwise False

renew_lock

	
lockmgr.lockmgr.renew_lock(lock: Union[str, lockmgr.models.Lock], expires: int = 600, add_time: bool = False, **kwargs) → lockmgr.models.Lock

	Renew an existing lock for more expiry time.

Note: This function will NOT reduce a lock’s expiry time, only lengthen. If add_time is False,
and the new expiration time expires is shorter than the lock’s existing expiration time, then the lock’s
expiry time will be left untouched.

Example - Renew an existing lock:

>>> lk = get_lock('my_app:somelock', expires=10)
>>> sleep(5)
>>> lk = renew_lock(lk, 20) # Change the expiry time to 20 seconds from now
>>> sleep(15)
>>> is_locked('my_app:somelock') # 15 seconds later, the lock is still locked
True

Example - Try to renew, but get a new lock if it’s already been released:

>>> lk = get_lock('my_app:somelock', expires=5)
>>> sleep(10)
>>> lk = renew_lock(lk, 20, create=True) # If the lock is expired/non-existant, make a new lock
>>> sleep(15)
>>> is_locked('my_app:somelock') # 15 seconds later, the lock is still locked
True

	Parameters

	
	lock (Lock) – Name of the lock to renew

	lock – A Lock object to renew

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600) If not add_time, then this is the new expiration time in seconds from now.
If add_time, then this many seconds will be added to the expiration time of the lock.

	add_time (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) If True, then expires seconds will be added to the existing
lock expiration time, instead of setting the expiration time to now + expires

	Key bool create

	(Default: False) If True, then create a new lock if it doesn’t exist / already expired.

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int lock_process

	(Optional) The process ID requesting the lock

	Raises

	LockNotFound – Raised if the requested lock doesn’t exist / is already expired and create is False.

	Return Lock lock

	The Lock object which was renewed

set_lock

	
lockmgr.lockmgr.set_lock(*locks, timeout=600, fail=False, renew=True, create=True, **options) → lockmgr.lockmgr.LockSetResult

	This function is for advanced users, offering multiple lock creation, renewing, along with “all or nothing”
locking with database rollback via the argument fail.

Unlike other lock management functions, set_lock returns a LockSetResult object, which is designed
to allow you to see clearly as to what locks were created, renewed, or skipped.

Example Usage

Let’s set two locks, hello and world.

>>> res = set_lock('hello', 'world')
>>> res['locks']
[<Lock name='hello' locked_by='example.org' locked_until='2019-11-22 02:01:55.439390+00:00'>,
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 02:01:55.442734+00:00'>]
>>> res['counts']
{'created': 2, 'renewed': 0, 'skip_create': 0, 'skip_renew': 0}

If we run set_lock again with the same arguments, we’ll still get the locks list, but we’ll see the counts
show that they were renewed instead of created.

>>> x = set_lock('hello', 'world')
>>> x['locks']
[<Lock name='hello' locked_by='example.org' locked_until='2019-11-22 02:03:06.762620+00:00'>,
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 02:03:06.766804+00:00'>]
>>> x['counts']
{'created': 0, 'renewed': 2, 'skip_create': 0, 'skip_renew': 0}

Since the result is an object, you can also access attributes via dot notation, as well as dict-like notation.

We can see inside of the statuses list - the action that was taken on each lock we specified, so we can see
what locks were created, renewed, or skipped etc.

>>> x.statuses[0]
('hello', {'was_locked': True, 'status': 'extend', 'locked': True})
>>> x.statuses[1]
('world', {'was_locked': True, 'status': 'extend', 'locked': True})

	Parameters

	
	locks (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – One or more lock names, as positional arguments, to create or renew.

	timeout (int [https://docs.python.org/3.6/library/functions.html#int]) – On existing locks, update locked_until to now + timeout (seconds)

	fail (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) If True, all lock creations will be rolled back if an existing lock
is encountered, and LockFail will be raised.

	renew (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, any existing locks in locks will be renewed to
now + timeout (seconds). If False, existing locks will just be skipped.

	create (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, any names in locks which aren’t yet locked, will have a lock
created for them, with their expiry set to timeout seconds from now.

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int process_id

	(Optional) The process ID requesting the lock

	Return LockSetResult results

	A LockSetResult object containing the results of the set_lock operation.

unlock

	
lockmgr.lockmgr.unlock(lock: Union[lockmgr.models.Lock, str])

	Releases a given lock - either specified as a string name, or as a payments.models.Lock object.

Usage:

>>> mylock = get_lock('mylock', expires=60)
>>> unlock('mylock') # Delete the lock by name
>>> unlock(mylock) # Or by Lock object.

	Parameters

	
	lock (Lock) – The name of the lock to release

	lock – A Lock object to release

LockMgr

	
class lockmgr.lockmgr.LockMgr(name, expires: Optional[int] = 600, locked_by=None, lock_process=None, wait: int = None)

	LockMgr is a wrapper class for the various locking functions in this module, e.g. get_lock(), and
is designed to be used as a context manager, i.e. using a with statement.

By using django-lockmgr via this context manager, it ensures you don’t forget to release any locks after
you’ve finished with the resources you were using.

Not only that, but it also ensures in the event of an exception, or an unexpected crash of your application,
that your locks will usually be safely released by __exit__().

Usage:

Using a with statement, create a LockMgr for mylock with automatic expiration if held for more than
60 seconds. After the with statement is completed, all locks created will be removed.

>>> try:
... with LockMgr('mylock', 60) as l:
... print('Doing stuff with mylock locked.')
... # Obtain an additional lock for 'otherlock' - will use the same expiry as mylock
... # Since ``ret`` is set to True, it will return a bool instead of raising Lock
... if l.lock('otherlock', ret=True):
... print('Now otherlock is locked...')
... l.unlock('otherlock')
... else:
... print('Not doing stuff because otherlock is already locked...')
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))

You can also use renew() to request more time / re-create the lock if you’re close to, or have already
exceeded the lock expiration time (defaults to 10 mins).

>>> try:
... with LockMgr('mylock', 60) as l:
... print('Doing stuff with mylock locked.')
... sleep(50)
... l.renew(expires=30) # Add an additional 30 seconds of time to the lock expiration
... sleep(50) # It's now been 100 seconds. 'mylock' should be expired.
... # We can still renew an expired lock when using LockMgr. It will simply re-create the lock.
... l.renew() # Add an additional 120 seconds (default) of time to the lock expiration
... except Locked as e:
... print('Failed to lock. Reason: ', type(e), str(e))

	
__init__(name, expires: Optional[int] = 600, locked_by=None, lock_process=None, wait: int = None)

	Create an instance of LockMgr. This class is primarily intended to be used as
a context manager (i.e. with LockMgr('mylock') as l:), see the main PyDoc block for LockMgr
for more info.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The lock name to create (when using as a context manager)

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – How many seconds before this lock is considered stale and forcefully released?

	locked_by (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (Optional) Who/what is using this lock. Defaults to system hostname.

	lock_process (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) The process ID of the app using this lock

	wait (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) Wait this many seconds for a lock to be released before giving up. If
this is None then waiting will be disabled

	
expires = None

	The user supplied expiration time in seconds

	
lock(name, expires: int = None, ret: bool = False, wait: int = None)

	Obtains a lock using get_lock() and appends it to _locks if successful.

If the argument ret is False (default), it will raise Locked if the lock couldn’t be obtained.

Otherwise, if ret is True, it will simply return False if the requested lock name is already locked.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A unique name to identify your lock

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600 sec) How long before this lock is considered stale and forcefully released?

	ret (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) Return False if locked, instead of raising Locked.

	wait (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) Retry obtaining the lock for this many seconds. MUST be divisible by 5.
If not empty, will retry obtaining the lock every 5 seconds until wait seconds

	Raises

	Locked – If the requested lock name is already locked elsewhere, Locked will be raised

	Return bool success

	True if successful. If ret is true then will also return False on failure.

	
lock_process = None

	Usually None, but sometimes may represent the process ID this lock belongs to

	
locked_by = None

	Who/what created this lock - usually the hostname unless manually specified

	
main_lock = None

	The Lock object created at the start of a with LockManager('xyz') statement

	
name = None

	The lock name (from the constructor)

	
renew(lock: Union[str, lockmgr.models.Lock] = None, expires: int = 120, add_time: bool = True, **kwargs) → lockmgr.models.Lock

	Add expires seconds to the lock expiry time of lock. If lock isn’t specified, will default to
the class instance’s original lock main_lock

Alias for renew_lock() - but with add_time and create set to True by default,
instead of False.

With no arguments specified, this method will renew the main lock of the class main_lock
for an additional 2 minutes (or if the lock is already expired, will re-create it with 2 min expiry).

Example usage:

>>> with LockMgr('mylock', expires=30) as l:
... sleep(10)
... l.renew(expires=60) # Add 60 seconds more time to 'mylock' expiration
... l.main_lock.refresh_from_db()
... print(l.main_lock.expires_seconds) # Output: 79
... l.renew('lockx', expires=60) # Add 60 seconds more time to 'lockx' expiration

	Parameters

	
	lock (Lock) – Name of the lock to renew

	lock – A Lock object to renew

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 120) If not add_time, then this is the new expiration time in seconds from now.
If add_time, then this many seconds will be added to the expiration time of the lock.

	add_time (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, then expires seconds will be added to the existing
lock expiration time, instead of setting the expiration time to now + expires

Extra Keyword Arguments

	Key bool create

	(Default: True) If True, then create a new lock if it doesn’t exist / already expired

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int lock_process

	(Optional) The process ID requesting the lock

Exceptions

	Raises

	LockNotFound – Raised if the requested lock doesn’t exist / is already expired and create is False.

	Return Lock lock

	The Lock object which was renewed

	
unlock(lock: Union[lockmgr.models.Lock, str] = None)

	Alias for unlock()

	
wait = None

	How long to wait for a lock before giving up. If this is None then waiting will be disabled

Methods

Methods

	__init__(name[, expires, locked_by, …])

	Create an instance of LockMgr.

	lock(name[, expires, ret, wait])

	Obtains a lock using get_lock() and appends it to _locks if successful.

	renew([lock, expires, add_time])

	Add expires seconds to the lock expiry time of lock.

	unlock([lock])

	Alias for unlock()

	__enter__()

	When LockMgr is used as a context manager, i.e.

	__exit__(exc_type, exc_val, exc_tb)

	When the context manager is finished or an exception occurs, we unlock all locks that were created during the context manager session.

__init__

	
LockMgr.__init__(name, expires: Optional[int] = 600, locked_by=None, lock_process=None, wait: int = None)

	Create an instance of LockMgr. This class is primarily intended to be used as
a context manager (i.e. with LockMgr('mylock') as l:), see the main PyDoc block for LockMgr
for more info.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The lock name to create (when using as a context manager)

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – How many seconds before this lock is considered stale and forcefully released?

	locked_by (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (Optional) Who/what is using this lock. Defaults to system hostname.

	lock_process (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) The process ID of the app using this lock

	wait (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) Wait this many seconds for a lock to be released before giving up. If
this is None then waiting will be disabled

lock

	
LockMgr.lock(name, expires: int = None, ret: bool = False, wait: int = None)

	Obtains a lock using get_lock() and appends it to _locks if successful.

If the argument ret is False (default), it will raise Locked if the lock couldn’t be obtained.

Otherwise, if ret is True, it will simply return False if the requested lock name is already locked.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A unique name to identify your lock

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 600 sec) How long before this lock is considered stale and forcefully released?

	ret (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: False) Return False if locked, instead of raising Locked.

	wait (int [https://docs.python.org/3.6/library/functions.html#int]) – (Optional) Retry obtaining the lock for this many seconds. MUST be divisible by 5.
If not empty, will retry obtaining the lock every 5 seconds until wait seconds

	Raises

	Locked – If the requested lock name is already locked elsewhere, Locked will be raised

	Return bool success

	True if successful. If ret is true then will also return False on failure.

renew

	
LockMgr.renew(lock: Union[str, lockmgr.models.Lock] = None, expires: int = 120, add_time: bool = True, **kwargs) → lockmgr.models.Lock

	Add expires seconds to the lock expiry time of lock. If lock isn’t specified, will default to
the class instance’s original lock main_lock

Alias for renew_lock() - but with add_time and create set to True by default,
instead of False.

With no arguments specified, this method will renew the main lock of the class main_lock
for an additional 2 minutes (or if the lock is already expired, will re-create it with 2 min expiry).

Example usage:

>>> with LockMgr('mylock', expires=30) as l:
... sleep(10)
... l.renew(expires=60) # Add 60 seconds more time to 'mylock' expiration
... l.main_lock.refresh_from_db()
... print(l.main_lock.expires_seconds) # Output: 79
... l.renew('lockx', expires=60) # Add 60 seconds more time to 'lockx' expiration

	Parameters

	
	lock (Lock) – Name of the lock to renew

	lock – A Lock object to renew

	expires (int [https://docs.python.org/3.6/library/functions.html#int]) – (Default: 120) If not add_time, then this is the new expiration time in seconds from now.
If add_time, then this many seconds will be added to the expiration time of the lock.

	add_time (bool [https://docs.python.org/3.6/library/functions.html#bool]) – (Default: True) If True, then expires seconds will be added to the existing
lock expiration time, instead of setting the expiration time to now + expires

Extra Keyword Arguments

	Key bool create

	(Default: True) If True, then create a new lock if it doesn’t exist / already expired

	Key str locked_by

	(Default: system hostname) What server/app is trying to obtain this lock?

	Key int lock_process

	(Optional) The process ID requesting the lock

Exceptions

	Raises

	LockNotFound – Raised if the requested lock doesn’t exist / is already expired and create is False.

	Return Lock lock

	The Lock object which was renewed

unlock

	
LockMgr.unlock(lock: Union[lockmgr.models.Lock, str] = None)

	Alias for unlock()

__enter__

	
LockMgr.__enter__()

	When LockMgr is used as a context manager, i.e. with LockManager('xyz') as l: - this method
is called to setup the context manager and return the object used for the with statement.

This function simply creates the lock specified by the user to __init__() - then when the context
manager is finished, or an exception occurs, __exit__() is called.

__exit__

	
LockMgr.__exit__(exc_type, exc_val, exc_tb)

	When the context manager is finished or an exception occurs, we unlock all locks that were created
during the context manager session.

Database Models (lockmgr.models)

Functions

	default_lock_expiry()

	

Classes

	Lock(name, locked_by, lock_process, …)

	

	
class lockmgr.models.Lock(name, locked_by, lock_process, locked_until, created_at, updated_at)

	
	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
property expired

	Property - returns True if the Lock is past expiry (locked_until), otherwise False

	
property expires_in

	The amount of time until this lock expires, as a timedelta - or None if it doesn’t expire

	
property expires_seconds

	The amount of seconds until this lock expires as integer seconds - or None if it doesn’t expire

	
locked_by

	Name of the node / app which created this lock

	
locked_until

	Locks have an expiration time, to help avoid the issue of stuck locks, either due to forgetting to add cleanup code,
or simply due to the app/server crashing before it can release the lock.

After a lock has expired, it’s assumed that the lock is stale and needs to be removed, and the affected resources
are safe to use.

	
name

	Unique name of the lock, referring to what specific resource(s) is locked

default_lock_expiry

	
lockmgr.models.default_lock_expiry()

	

Lock

	
class lockmgr.models.Lock(name, locked_by, lock_process, locked_until, created_at, updated_at)

	
	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
property expired

	Property - returns True if the Lock is past expiry (locked_until), otherwise False

	
property expires_in

	The amount of time until this lock expires, as a timedelta - or None if it doesn’t expire

	
property expires_seconds

	The amount of seconds until this lock expires as integer seconds - or None if it doesn’t expire

	
locked_by

	Name of the node / app which created this lock

	
locked_until

	Locks have an expiration time, to help avoid the issue of stuck locks, either due to forgetting to add cleanup code,
or simply due to the app/server crashing before it can release the lock.

After a lock has expired, it’s assumed that the lock is stale and needs to be removed, and the affected resources
are safe to use.

	
name

	Unique name of the lock, referring to what specific resource(s) is locked

Methods

Methods

	get_next_by_created_at(*[, field, is_next])

	

	get_next_by_updated_at(*[, field, is_next])

	

	get_previous_by_created_at(*[, field, is_next])

	

	get_previous_by_updated_at(*[, field, is_next])

	

Attributes

Attributes

	created_at

	A wrapper for a deferred-loading field.

	expired

	Property - returns True if the Lock is past expiry (locked_until), otherwise False

	expires_in

	The amount of time until this lock expires, as a timedelta - or None if it doesn’t expire

	expires_seconds

	The amount of seconds until this lock expires as integer seconds - or None if it doesn’t expire

	lock_process

	A wrapper for a deferred-loading field.

	locked_by

	Name of the node / app which created this lock

	locked_until

	Locks have an expiration time, to help avoid the issue of stuck locks, either due to forgetting to add cleanup code, or simply due to the app/server crashing before it can release the lock.

	name

	Unique name of the lock, referring to what specific resource(s) is locked

	objects

	

	updated_at

	A wrapper for a deferred-loading field.

get_next_by_created_at

	
Lock.get_next_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=True, **kwargs)

	

get_next_by_updated_at

	
Lock.get_next_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=True, **kwargs)

	

get_previous_by_created_at

	
Lock.get_previous_by_created_at(*, field=<django.db.models.fields.DateTimeField: created_at>, is_next=False, **kwargs)

	

get_previous_by_updated_at

	
Lock.get_previous_by_updated_at(*, field=<django.db.models.fields.DateTimeField: updated_at>, is_next=False, **kwargs)

	

created_at

	
Lock.created_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

expired

	
property Lock.expired

	Property - returns True if the Lock is past expiry (locked_until), otherwise False

expires_in

	
property Lock.expires_in

	The amount of time until this lock expires, as a timedelta - or None if it doesn’t expire

expires_seconds

	
property Lock.expires_seconds

	The amount of seconds until this lock expires as integer seconds - or None if it doesn’t expire

lock_process

	
Lock.lock_process

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

locked_by

	
Lock.locked_by

	Name of the node / app which created this lock

locked_until

	
Lock.locked_until

	Locks have an expiration time, to help avoid the issue of stuck locks, either due to forgetting to add cleanup code,
or simply due to the app/server crashing before it can release the lock.

After a lock has expired, it’s assumed that the lock is stale and needs to be removed, and the affected resources
are safe to use.

name

	
Lock.name

	Unique name of the lock, referring to what specific resource(s) is locked

objects

	
Lock.objects = <django.db.models.manager.Manager object>

	

updated_at

	
Lock.updated_at

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

Django Management Commands

While Django Lock Manager is primarily designed to be used programmatically within your Django application
via the Python functions and methods - sometimes it can be useful to have administration commands to help
when troubleshooting or experimenting with the lock manager.

Once you’ve installed django-lockmgr, including adding the app to your INSTALLED_APPS and
ran the migrations, you’ll be able to use the below commands via your Django application’s ./manage.py script.

See the below module links for documentation about each command.

	lockmgr.management.commands.clear_lock

	The clear_lock management command allows you to delete one or more locks, which may be useful for troubleshooting if you have stagnant locks.

	lockmgr.management.commands.list_locks

	The list_locks management command allows you to view all current locks, which may be useful for troubleshooting, e.g.

	lockmgr.management.commands.reset_locks

	The reset_locks management command allows you to delete ALL LOCKS set by django-lockmgr in your application’s database, regardless of their expiration time, name, or who/what created them.

	lockmgr.management.commands.set_lock

	The set_lock management command allows you to create / renew locks using django-lockmgr from the command line.

clear_lock

The clear_lock management command allows you to delete one or more locks, which may be useful for
troubleshooting if you have stagnant locks.

You may encounter stagnant locks if you’re using locking functions such as get_lock(), instead of using the
context manager LockMgr (or in rare events where your application exits unexpectedly, without time
to cleanup locks).

Below is an excerpt from the manage.py help ./manage.py clear_lock --help:

Releases one or more specified locks set using Privex's django-lockmgr package

positional arguments:
 locks One or more lockmgr lock names (as positional args) to release the locks for

Example usage

Create the two locks 'hello' and 'world'
./manage.py set_lock hello world

 Finished creating / renewing 2 locks.

Delete the locks 'hello', 'world' and 'test' (it doesn't matter if some of the passed locks don't exist)
./manage.py clear_lock hello world test

 Releasing lock hello from LockMgr...
 Lock hello has been removed (if it exists).

 Releasing lock world from LockMgr...
 Lock world has been removed (if it exists).

 Releasing lock test from LockMgr...
 Lock test has been removed (if it exists).

Classes

	Command()

	

	
class lockmgr.management.commands.clear_lock.Command

	
	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Command

	
class lockmgr.management.commands.clear_lock.Command

	
	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Methods

Methods

	__init__()

	Initialize self.

	add_arguments(parser)

	Entry point for subclassed commands to add custom arguments.

	handle(*args, **options)

	The actual logic of the command.

Attributes

Attributes

	help

	

__init__

	
Command.__init__()

	Initialize self. See help(type(self)) for accurate signature.

add_arguments

	
Command.add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

handle

	
Command.handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

help

	
Command.help = "Releases one or more specified locks set using Privex's django-lockmgr package"

	

list_locks

The list_locks management command allows you to view all current locks, which may be useful for troubleshooting,
e.g. checking whether or not a lock name really is locked, and what locked it

Below is an excerpt from the manage.py help ./manage.py list_locks --help:

List all locks that were set using Privex's django-lockmgr package

There are no arguments nor switches available for this command.

Example usage

Create the two locks 'hello' and 'world'
./manage.py set_lock hello world

 Finished creating / renewing 2 locks.

./manage.py list_locks

 There are currently 2 active locks using Privex Django-LockMgr

 ===

 <Lock name='hello' locked_by='example.org' lock_process='None' locked_until='2019-11-22 00:49:02.264729+00:00'>
 <Lock name='world' locked_by='example.org' lock_process='None' locked_until='2019-11-22 00:49:02.267728+00:00'>

 ===

Classes

	Command()

	

	
class lockmgr.management.commands.list_locks.Command

	
	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Command

	
class lockmgr.management.commands.list_locks.Command

	
	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Methods

Methods

	__init__()

	Initialize self.

	handle(*args, **options)

	The actual logic of the command.

Attributes

Attributes

	help

	

__init__

	
Command.__init__()

	Initialize self. See help(type(self)) for accurate signature.

handle

	
Command.handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

help

	
Command.help = "List all locks that were set using Privex's django-lockmgr package"

	

reset_locks

The reset_locks management command allows you to delete ALL LOCKS set by django-lockmgr in your
application’s database, regardless of their expiration time, name, or who/what created them.

You may encounter stagnant locks if you’re using locking functions such as get_lock(), instead of using the
context manager LockMgr (or in rare events where your application exits unexpectedly, without time
to cleanup locks).

Below is an excerpt from the manage.py help ./manage.py reset_locks --help:

Clears ALL locks that were set using Privex's django-lockmgr package

optional arguments:
 -h, --help show this help message and exit
 -f, --force Do not show warning / ask if you are sure before deleting ALL locks

Example usage

First let’s create two locks using lockmgr.management.commands.set_lock

Create the two locks 'hello' and 'world'
./manage.py set_lock hello world

 Finished creating / renewing 2 locks.

Now we’ll run reset_locks without any arguments. You can see it requires confirmation, since it can be dangerous
to clear all locks if there are any applications running (or scheduled on a cron) that depend on the locks
to avoid conflicts.

./manage.py reset_locks

 WARNING: You are about to clear ALL locks set using Privex LockMgr.
 You should only do this if you know what you're doing, and have made sure to stop any running
 instances of your application, to ensure no conflicts are caused by removing ALL LOCKS.

 The following 2 locks would be removed:

 ===

 <Lock name='hello' locked_by='example.org' locked_until='2019-11-22 00:49:02.264729+00:00'>
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 00:49:02.267728+00:00'>

 ===

 Are you SURE you want to clear all locks?
 Type YES in all capitals if you are sure > YES

 ===

 Please wait... Removing all locks regardless of their status or expiration.

 A total of 2 lock rows were deleted. All locks should now be removed.

 ===

 Finished clearing locks.

 ===

Example 2 - Using the FORCE argument to skip the prompt

Let’s re-create those locks, and now run reset_locks with -f (force).

Create the two locks 'hello' and 'world'
./manage.py set_lock hello world

 Finished creating / renewing 2 locks.

Run 'reset_locks' with option '-f' (force / do not ask for confirmation)
./manage.py reset_locks -f

 The following 2 locks would be removed:

 ===

 <Lock name='hello' locked_by='example.org' locked_until='2019-11-22 00:58:00.042322+00:00'>
 <Lock name='world' locked_by='example.org' locked_until='2019-11-22 00:58:00.045513+00:00'>

 ===

 Option 'force' (-f / --force) was specified. Skipping confirmation prompt.
 Please wait... Removing all locks regardless of their status or expiration.

 A total of 2 lock rows were deleted. All locks should now be removed.

 ===

 Finished clearing locks.

 ===

Classes

	Command()

	

	
class lockmgr.management.commands.reset_locks.Command

	
	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Command

	
class lockmgr.management.commands.reset_locks.Command

	
	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Methods

Methods

	__init__()

	Initialize self.

	add_arguments(parser)

	Entry point for subclassed commands to add custom arguments.

	handle(*args, **options)

	The actual logic of the command.

Attributes

Attributes

	help

	

__init__

	
Command.__init__()

	Initialize self. See help(type(self)) for accurate signature.

add_arguments

	
Command.add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

handle

	
Command.handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

help

	
Command.help = "Clears ALL locks that were set using Privex's django-lockmgr package"

	

set_lock

The set_lock management command allows you to create / renew locks using django-lockmgr from the command line.

If you don’t specify any behaviour switches such as --no-renew or --fail, then set_lock will create any
locks which aren’t already locked, and renew any locks which are already locked.

Below is an excerpt from ./manage.py set_lock --help (added at 21 Nov @ 9 PM UTC):

-h, --help show this help message and exit
-n, --no-renew Do not renew any locks which already exist
-r, --only-renew Only renew existing locks, do not create new ones.
-k, --no-timeout Never expire these locks (--timeout will be ignored). They must be manually unlocked.
-t TIMEOUT, --timeout TIMEOUT Lock timeout in seconds (default 600)
-e, --fail Return an error (exit code 2) if one or more locks already exist. (will not create/renew ANY
passed locks if one of the passed lock names exists)

The -e or --fail option can be a useful option when you’re wanting to set multiple locks in unison, but
you need to be sure that all of the locks are set at the same time - and if any of the locks already exist, any
of the locks specified should not be created / be rolled back.

Below is an example of this special feature in use:

user@host ~ $./manage.py set_lock example
 > Lock example did not yet exist. Successfully locked 'example' - expiry: 2019-11-21 15:30:03.857412

user@host ~ $./manage.py set_lock -e hello world example

 > Lock hello did not yet exist. Successfully locked 'hello' - expiry: 2019-11-21 15:30:27.706378

 > Lock world did not yet exist. Successfully locked 'world' - expiry: 2019-11-21 15:30:27.709321

 !!
 !!! An existing lock was found:
 !!! <Lock name='example' locked_by='Chriss-iMac-Pro.local' locked_until='2019-11-21 15:30:03.857412'>
 !!! As you have specified -e / --fail, any locks created during this session will now be
 !!! rolled back for your safety.
 !!
 !!! Any locks created during this session should now have been removed.
 !!

user@host ~ $./manage.py list_locks

There are currently 1 active locks using Privex Django-LockMgr

===

<Lock name='example' locked_by='example.org' lock_process='None' locked_until='2019-11-21 15:30:03.857412'>

===

Classes

	Command()

	

	
class lockmgr.management.commands.set_lock.Command

	
	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Command

	
class lockmgr.management.commands.set_lock.Command

	
	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

Methods

Methods

	__init__()

	Initialize self.

	add_arguments(parser)

	Entry point for subclassed commands to add custom arguments.

	handle(*args, **options)

	The actual logic of the command.

Attributes

Attributes

	help

	

__init__

	
Command.__init__()

	Initialize self. See help(type(self)) for accurate signature.

add_arguments

	
Command.add_arguments(parser: django.core.management.base.CommandParser)

	Entry point for subclassed commands to add custom arguments.

handle

	
Command.handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

help

	
Command.help = "Add and/or renew locks using Privex's django-lockmgr package"

	

How to use the unit tests

This module contains test cases for Privex’s Django Lock Manager (django-lockmgr).

Testing pre-requisites

	Install all core and development requirements listed in requirements.txt

	Either PostgreSQL or MySQL is recommended, however the default SQLite3 may or may not work.

	Python 3.7 or 3.8 is recommended at the time of writing this. See README.md in-case this has changed.

pip3 install -r requirements.txt

If you’re using MySQL / Postgres, create a .env file in the root of the project, and enter the database
connection details:

If not specified, DB_USER and DB_NAME both default to 'lockmgr'
DB_USER=root
DB_NAME=lockmgr
If not specified, then the DB user password defaults to blank
DB_PASS=
If not specified, the DB host defaults to localhost, and the port as blank (automatic depending on backend)
DB_HOST=localhost
DB_PORT=5432
If not specified, the DB backend defaults to SQLite3 (stored in db.sqlite3 in root of project)
If you're using PostgreSQL:
DB_BACKEND=postgresql
If you're using MySQL / MariaDB:
DB_BACKEND=mysql

Running the tests via Django Test Runner / Django-Nose

After installing the packages listed in requirements.txt, you should now be able to run the tests using
Django’s manage.py:

Ensure you have all development requirements installed
user@host: ~/django-lockmgr $ pip3 install -r requirements.txt

Then run the tests using manage.py
user@host: ~/django-lockmgr $./manage.py test

nosetests --verbosity=1
Creating test database for alias 'default'...
............................
--
Ran 28 tests in 20.291s

OK
Destroying test database for alias 'default'...

For more verbosity, simply add --verbose to the end of the command:

$./manage.py test --verbose

 nosetests --verbose --verbosity=2

 Creating test database for alias 'default' ('test_lockmgr')...
 Operations to perform:
 Synchronize unmigrated apps: django_nose
 Apply all migrations: lockmgr
 Synchronizing apps without migrations:
 Creating tables...
 Running deferred SQL...
 Running migrations:
 Applying lockmgr.0001_initial... OK

 Locking test_getlock then checking if Lock is raised when calling it again. ... ok
 Locking test_unlock, unlocking it, then lock/unlock again to confirm it was freed. ... ok
 Test that expired locks are correctly removed ... ok
 Test that LockMgr runs code with 'wait for lock expiry' when lock expires within wait period ... ok
 Test that LockMgr raises Locked with 'wait for lock expiry' when lock still locked after waiting period ... ok
 Locking test_lockmgr and test_lockmgr2 using LockMgr, then verifying the lock was created ... ok
 Testing that LockMgr correctly removes Locks after an exception ... ok
 Renew an existing lock by lock name and confirm locked_until was increased ... ok
 Renew an existing lock by lock name with add_time=True and confirm locked_until was increased ... ok
 Renew an existing lock by Lock object with add_time=True and confirm locked_until was increased ... ok
 Renew an existing lock by Lock object and confirm locked_until was increased ... ok
 Renew a non-existent lock by lock name and confirm LockNotFound is raised ... ok
 Renew a non-existent lock by lock name with create=True and confirm new lock is created ... ok

 --
 Ran 13 tests in 10.106s

 OK
 Destroying test database for alias 'default' ('test_lockmgr')...

Copyright:

+===+
| © 2019 Privex Inc. |
| https://www.privex.io |
+===+
| |
| Django Database Lock Manager |
| License: X11/MIT |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===+

Unit Test List / Overview

	test_lockmgr

	

	test_lockmgr_class

	

	test_renew

	

tests.test_lockmgr

Classes

	TestLockMgrModule([methodName])

	Tests which are related to the module-level functions in lockmgr.lockmgr

	
class tests.test_lockmgr.TestLockMgrModule(methodName='runTest')

	Tests which are related to the module-level functions in lockmgr.lockmgr

Tests related to the manager class lockmgr.lockmgr.LockMgr can be found
in tests.test_lockmgr_class

	
test_getlock_clean()

	Locking test_getlock then checking if Locked is raised when calling it again.

	
test_getlock_unlock()

	Locking test_unlock, unlocking it, then lock/unlock again to confirm it was freed.

	
test_is_locked()

	Locking test_is_locked then testing is_locked returns True for existing locks and False for non-existent.

	
test_lock_expiry()

	Test that expired locks are correctly removed

	
test_lock_no_expiry()

	Test that locks with None timeout aren’t removed by clean_locks

	
test_lock_zero_expiry()

	Test that locks with 0 timeout aren’t removed by clean_locks

TestLockMgrModule

	
class tests.test_lockmgr.TestLockMgrModule(methodName='runTest')

	Tests which are related to the module-level functions in lockmgr.lockmgr

Tests related to the manager class lockmgr.lockmgr.LockMgr can be found
in tests.test_lockmgr_class

	
__init__(methodName='runTest')

	Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

	
test_getlock_clean()

	Locking test_getlock then checking if Locked is raised when calling it again.

	
test_getlock_unlock()

	Locking test_unlock, unlocking it, then lock/unlock again to confirm it was freed.

	
test_is_locked()

	Locking test_is_locked then testing is_locked returns True for existing locks and False for non-existent.

	
test_lock_expiry()

	Test that expired locks are correctly removed

	
test_lock_no_expiry()

	Test that locks with None timeout aren’t removed by clean_locks

	
test_lock_zero_expiry()

	Test that locks with 0 timeout aren’t removed by clean_locks

Methods

Methods

	test_getlock_clean()

	Locking test_getlock then checking if Locked is raised when calling it again.

	test_getlock_unlock()

	Locking test_unlock, unlocking it, then lock/unlock again to confirm it was freed.

	test_is_locked()

	Locking test_is_locked then testing is_locked returns True for existing locks and False for non-existent.

	test_lock_expiry()

	Test that expired locks are correctly removed

	test_lock_no_expiry()

	Test that locks with None timeout aren’t removed by clean_locks

	test_lock_zero_expiry()

	Test that locks with 0 timeout aren’t removed by clean_locks

Attributes

Attributes

test_getlock_clean

	
TestLockMgrModule.test_getlock_clean()

	Locking test_getlock then checking if Locked is raised when calling it again.

test_getlock_unlock

	
TestLockMgrModule.test_getlock_unlock()

	Locking test_unlock, unlocking it, then lock/unlock again to confirm it was freed.

test_is_locked

	
TestLockMgrModule.test_is_locked()

	Locking test_is_locked then testing is_locked returns True for existing locks and False for non-existent.

test_lock_expiry

	
TestLockMgrModule.test_lock_expiry()

	Test that expired locks are correctly removed

test_lock_no_expiry

	
TestLockMgrModule.test_lock_no_expiry()

	Test that locks with None timeout aren’t removed by clean_locks

test_lock_zero_expiry

	
TestLockMgrModule.test_lock_zero_expiry()

	Test that locks with 0 timeout aren’t removed by clean_locks

tests.test_lockmgr_class

Classes

	TestLockMgrClass([methodName])

	Tests which are related to the manager class lockmgr.lockmgr.LockMgr

	
class tests.test_lockmgr_class.TestLockMgrClass(methodName='runTest')

	Tests which are related to the manager class lockmgr.lockmgr.LockMgr

Tests related to the module-level functions in lockmgr.lockmgr can be
found in tests.test_lockmgr

	
test_lock_wait()

	Test that LockMgr runs code with ‘wait for lock expiry’ when lock expires within wait period

	
test_lock_wait_timeout()

	Test that LockMgr raises Locked with ‘wait for lock expiry’ when lock still locked after waiting period

	
test_lockmgr()

	Locking test_lockmgr and test_lockmgr2 using LockMgr, then verifying the lock was created

	
test_lockmgr_except()

	Testing that LockMgr correctly removes Locks after an exception

TestLockMgrClass

	
class tests.test_lockmgr_class.TestLockMgrClass(methodName='runTest')

	Tests which are related to the manager class lockmgr.lockmgr.LockMgr

Tests related to the module-level functions in lockmgr.lockmgr can be
found in tests.test_lockmgr

	
__init__(methodName='runTest')

	Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

	
test_lock_wait()

	Test that LockMgr runs code with ‘wait for lock expiry’ when lock expires within wait period

	
test_lock_wait_timeout()

	Test that LockMgr raises Locked with ‘wait for lock expiry’ when lock still locked after waiting period

	
test_lockmgr()

	Locking test_lockmgr and test_lockmgr2 using LockMgr, then verifying the lock was created

	
test_lockmgr_except()

	Testing that LockMgr correctly removes Locks after an exception

Methods

Methods

	test_lock_wait()

	Test that LockMgr runs code with ‘wait for lock expiry’ when lock expires within wait period

	test_lock_wait_timeout()

	Test that LockMgr raises Locked with ‘wait for lock expiry’ when lock still locked after waiting period

	test_lockmgr()

	Locking test_lockmgr and test_lockmgr2 using LockMgr, then verifying the lock was created

	test_lockmgr_except()

	Testing that LockMgr correctly removes Locks after an exception

Attributes

Attributes

test_lock_wait

	
TestLockMgrClass.test_lock_wait()

	Test that LockMgr runs code with ‘wait for lock expiry’ when lock expires within wait period

test_lock_wait_timeout

	
TestLockMgrClass.test_lock_wait_timeout()

	Test that LockMgr raises Locked with ‘wait for lock expiry’ when lock still locked after waiting period

test_lockmgr

	
TestLockMgrClass.test_lockmgr()

	Locking test_lockmgr and test_lockmgr2 using LockMgr, then verifying the lock was created

test_lockmgr_except

	
TestLockMgrClass.test_lockmgr_except()

	Testing that LockMgr correctly removes Locks after an exception

tests.test_renew

Classes

	TestLockRenew([methodName])

	

	
class tests.test_renew.TestLockRenew(methodName='runTest')

	
	
test_lockmgr_renew_expired()

	Renew an expired main lock within a LockMgr ‘with’ statement, confirm time was added to the lock expiry

	
test_lockmgr_renew_main()

	Renew the main lock within a LockMgr ‘with’ statement, confirm appropriate time was added to the lock

	
test_renew_existing_name()

	Renew an existing lock by lock name and confirm locked_until was increased

	
test_renew_existing_name_add_time()

	Renew an existing lock by lock name with add_time=True and confirm locked_until was increased

	
test_renew_existing_object_add_time()

	Renew an existing lock by Lock object with add_time=True and confirm locked_until was increased

	
test_renew_lock_object()

	Renew an existing lock by Lock object and confirm locked_until was increased

	
test_renew_non_existing_name()

	Renew a non-existent lock by lock name and confirm LockNotFound is raised

	
test_renew_non_existing_name_create()

	Renew a non-existent lock by lock name with create=True and confirm new lock is created

	
test_renew_shorter_expiration()

	Renew a lock with a shorter expiration time than it already has. Test the expiration time doesn’t drop.

	
test_renew_shorter_expiration_add_time()

	Renew a lock with a shorter expiration seconds (but with add_time=True). Test expiration time increases.

TestLockRenew

	
class tests.test_renew.TestLockRenew(methodName='runTest')

	
	
__init__(methodName='runTest')

	Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

	
test_lockmgr_renew_expired()

	Renew an expired main lock within a LockMgr ‘with’ statement, confirm time was added to the lock expiry

	
test_lockmgr_renew_main()

	Renew the main lock within a LockMgr ‘with’ statement, confirm appropriate time was added to the lock

	
test_renew_existing_name()

	Renew an existing lock by lock name and confirm locked_until was increased

	
test_renew_existing_name_add_time()

	Renew an existing lock by lock name with add_time=True and confirm locked_until was increased

	
test_renew_existing_object_add_time()

	Renew an existing lock by Lock object with add_time=True and confirm locked_until was increased

	
test_renew_lock_object()

	Renew an existing lock by Lock object and confirm locked_until was increased

	
test_renew_non_existing_name()

	Renew a non-existent lock by lock name and confirm LockNotFound is raised

	
test_renew_non_existing_name_create()

	Renew a non-existent lock by lock name with create=True and confirm new lock is created

	
test_renew_shorter_expiration()

	Renew a lock with a shorter expiration time than it already has. Test the expiration time doesn’t drop.

	
test_renew_shorter_expiration_add_time()

	Renew a lock with a shorter expiration seconds (but with add_time=True). Test expiration time increases.

Methods

Methods

	test_lockmgr_renew_expired()

	Renew an expired main lock within a LockMgr ‘with’ statement, confirm time was added to the lock expiry

	test_lockmgr_renew_main()

	Renew the main lock within a LockMgr ‘with’ statement, confirm appropriate time was added to the lock

	test_renew_existing_name()

	Renew an existing lock by lock name and confirm locked_until was increased

	test_renew_existing_name_add_time()

	Renew an existing lock by lock name with add_time=True and confirm locked_until was increased

	test_renew_existing_object_add_time()

	Renew an existing lock by Lock object with add_time=True and confirm locked_until was increased

	test_renew_lock_object()

	Renew an existing lock by Lock object and confirm locked_until was increased

	test_renew_non_existing_name()

	Renew a non-existent lock by lock name and confirm LockNotFound is raised

	test_renew_non_existing_name_create()

	Renew a non-existent lock by lock name with create=True and confirm new lock is created

	test_renew_shorter_expiration()

	Renew a lock with a shorter expiration time than it already has.

	test_renew_shorter_expiration_add_time()

	Renew a lock with a shorter expiration seconds (but with add_time=True).

Attributes

Attributes

test_lockmgr_renew_expired

	
TestLockRenew.test_lockmgr_renew_expired()

	Renew an expired main lock within a LockMgr ‘with’ statement, confirm time was added to the lock expiry

test_lockmgr_renew_main

	
TestLockRenew.test_lockmgr_renew_main()

	Renew the main lock within a LockMgr ‘with’ statement, confirm appropriate time was added to the lock

test_renew_existing_name

	
TestLockRenew.test_renew_existing_name()

	Renew an existing lock by lock name and confirm locked_until was increased

test_renew_existing_name_add_time

	
TestLockRenew.test_renew_existing_name_add_time()

	Renew an existing lock by lock name with add_time=True and confirm locked_until was increased

test_renew_existing_object_add_time

	
TestLockRenew.test_renew_existing_object_add_time()

	Renew an existing lock by Lock object with add_time=True and confirm locked_until was increased

test_renew_lock_object

	
TestLockRenew.test_renew_lock_object()

	Renew an existing lock by Lock object and confirm locked_until was increased

test_renew_non_existing_name

	
TestLockRenew.test_renew_non_existing_name()

	Renew a non-existent lock by lock name and confirm LockNotFound is raised

test_renew_non_existing_name_create

	
TestLockRenew.test_renew_non_existing_name_create()

	Renew a non-existent lock by lock name with create=True and confirm new lock is created

test_renew_shorter_expiration

	
TestLockRenew.test_renew_shorter_expiration()

	Renew a lock with a shorter expiration time than it already has. Test the expiration time doesn’t drop.

test_renew_shorter_expiration_add_time

	
TestLockRenew.test_renew_shorter_expiration_add_time()

	Renew a lock with a shorter expiration seconds (but with add_time=True). Test expiration time increases.

 Python Module Index

 l |
 t

 		 	

 		
 l	

 	[image: -]
 	
 lockmgr	

 	
 	
 lockmgr.lockmgr	

 	
 	
 lockmgr.management.commands	

 	
 	
 lockmgr.management.commands.clear_lock	

 	
 	
 lockmgr.management.commands.list_locks	

 	
 	
 lockmgr.management.commands.reset_locks	

 	
 	
 lockmgr.management.commands.set_lock	

 	
 	
 lockmgr.models	

 		 	

 		
 t	

 	[image: -]
 	
 tests	

 	
 	
 tests.test_lockmgr	

 	
 	
 tests.test_lockmgr_class	

 	
 	
 tests.test_renew	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (lockmgr.lockmgr.LockMgr method)

 	__exit__() (lockmgr.lockmgr.LockMgr method)

 	__init__() (lockmgr.lockmgr.LockMgr method)

 	(lockmgr.management.commands.clear_lock.Command method)

 	(lockmgr.management.commands.list_locks.Command method)

 	(lockmgr.management.commands.reset_locks.Command method)

 	(lockmgr.management.commands.set_lock.Command method)

A

 	
 	add_arguments() (lockmgr.management.commands.clear_lock.Command method), [1], [2]

 	(lockmgr.management.commands.reset_locks.Command method), [1], [2]

 	(lockmgr.management.commands.set_lock.Command method), [1], [2]

C

 	
 	clean_locks() (in module lockmgr.lockmgr), [1]

 	Command (class in lockmgr.management.commands.clear_lock), [1]

 	(class in lockmgr.management.commands.list_locks), [1]

 	(class in lockmgr.management.commands.reset_locks), [1]

 	(class in lockmgr.management.commands.set_lock), [1]

 	
 	created_at (lockmgr.models.Lock attribute)

D

 	
 	default_lock_expiry() (in module lockmgr.models)

E

 	
 	expired() (lockmgr.models.Lock property), [1], [2]

 	expires (lockmgr.lockmgr.LockMgr attribute), [1]

 	
 	expires_in() (lockmgr.models.Lock property), [1], [2]

 	expires_seconds() (lockmgr.models.Lock property), [1], [2]

G

 	
 	get_lock() (in module lockmgr.lockmgr), [1]

 	get_next_by_created_at() (lockmgr.models.Lock method)

 	
 	get_next_by_updated_at() (lockmgr.models.Lock method)

 	get_previous_by_created_at() (lockmgr.models.Lock method)

 	get_previous_by_updated_at() (lockmgr.models.Lock method)

H

 	
 	handle() (lockmgr.management.commands.clear_lock.Command method), [1], [2]

 	(lockmgr.management.commands.list_locks.Command method), [1], [2]

 	(lockmgr.management.commands.reset_locks.Command method), [1], [2]

 	(lockmgr.management.commands.set_lock.Command method), [1], [2]

 	
 	help (lockmgr.management.commands.clear_lock.Command attribute)

 	(lockmgr.management.commands.list_locks.Command attribute)

 	(lockmgr.management.commands.reset_locks.Command attribute)

 	(lockmgr.management.commands.set_lock.Command attribute)

I

 	
 	is_locked() (in module lockmgr.lockmgr), [1]

L

 	
 	Lock (class in lockmgr.models), [1]

 	lock() (lockmgr.lockmgr.LockMgr method), [1], [2]

 	Lock.DoesNotExist, [1]

 	Lock.MultipleObjectsReturned, [1]

 	lock_process (lockmgr.lockmgr.LockMgr attribute), [1]

 	(lockmgr.models.Lock attribute)

 	Locked

 	locked_by (lockmgr.lockmgr.LockMgr attribute), [1]

 	(lockmgr.models.Lock attribute), [1], [2]

 	locked_until (lockmgr.models.Lock attribute), [1], [2]

 	LockFail

 	
 	LockMgr (class in lockmgr.lockmgr), [1]

 	lockmgr.lockmgr (module)

 	lockmgr.management.commands (module)

 	lockmgr.management.commands.clear_lock (module)

 	lockmgr.management.commands.list_locks (module)

 	lockmgr.management.commands.reset_locks (module)

 	lockmgr.management.commands.set_lock (module)

 	lockmgr.models (module)

 	LockMgrConfig (class in lockmgr.apps)

 	LockNotFound

 	LockSetResult (class in lockmgr.lockmgr)

 	LockSetStatus (class in lockmgr.lockmgr)

M

 	
 	main_lock (lockmgr.lockmgr.LockMgr attribute), [1]

N

 	
 	name (lockmgr.apps.LockMgrConfig attribute)

 	(lockmgr.lockmgr.LockMgr attribute), [1]

 	(lockmgr.models.Lock attribute), [1], [2]

O

 	
 	objects (lockmgr.models.Lock attribute)

R

 	
 	renew() (lockmgr.lockmgr.LockMgr method), [1], [2]

 	
 	renew_lock() (in module lockmgr.lockmgr), [1]

S

 	
 	set_lock() (in module lockmgr.lockmgr), [1]

T

 	
 	test_getlock_clean() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_getlock_unlock() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_is_locked() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_lock_expiry() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_lock_no_expiry() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_lock_wait() (tests.test_lockmgr_class.TestLockMgrClass method), [1], [2]

 	test_lock_wait_timeout() (tests.test_lockmgr_class.TestLockMgrClass method), [1], [2]

 	test_lock_zero_expiry() (tests.test_lockmgr.TestLockMgrModule method), [1], [2]

 	test_lockmgr() (tests.test_lockmgr_class.TestLockMgrClass method), [1], [2]

 	test_lockmgr_except() (tests.test_lockmgr_class.TestLockMgrClass method), [1], [2]

 	test_lockmgr_renew_expired() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_lockmgr_renew_main() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_existing_name() (tests.test_renew.TestLockRenew method), [1], [2]

 	
 	test_renew_existing_name_add_time() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_existing_object_add_time() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_lock_object() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_non_existing_name() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_non_existing_name_create() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_shorter_expiration() (tests.test_renew.TestLockRenew method), [1], [2]

 	test_renew_shorter_expiration_add_time() (tests.test_renew.TestLockRenew method), [1], [2]

 	TestLockMgrClass (class in tests.test_lockmgr_class), [1]

 	TestLockMgrModule (class in tests.test_lockmgr), [1]

 	TestLockRenew (class in tests.test_renew), [1]

 	tests (module)

 	tests.test_lockmgr (module)

 	tests.test_lockmgr_class (module)

 	tests.test_renew (module)

U

 	
 	unlock() (in module lockmgr.lockmgr), [1]

 	(lockmgr.lockmgr.LockMgr method), [1], [2]

 	
 	updated_at (lockmgr.models.Lock attribute)

V

 	
 	version (lockmgr.apps.LockMgrConfig attribute)

W

 	
 	wait (lockmgr.lockmgr.LockMgr attribute), [1]

Example Usages

Boolean testing

The empty function

The empty() function in our opinion, is one of most useful functions in this library. It allows for a clean,
readable method of checking if a variable is “empty”, e.g. when checking keyword arguments to a function.

With a single argument, it simply tests if a variable is "" (empty string) or None.

The argument itr can be set to True if you consider an empty iterable such as [] or {} as “empty”. This
functionality also supports objects which implement __len__, and also checks to ensure __len__ is available,
avoiding an exception if an object doesn’t support it.

The argument zero can be set to True if you want to consider 0 (integer) and '0' (string) as “empty”.

from privex.helpers import empty

x, y = "", None
z, a = [], 0

empty(x) # True
empty(y) # True
empty(z) # False
empty(z, itr=True) # True
empty(a) # False
empty(a, zero=True) # True

The is_true and is_false functions

When handling user input, whether from an environment file (.env), or from data passed to a web API, it can be
a pain attempting to check for booleans.

A boolean True could be represented as the string 'true', '1', 'YES', as an integer 1, or even
an actual boolean True. Trying to test for all of those cases requires a rather long if statement…

Thus is_true() and is_false() were created.

from privex.helpers import is_true, is_false

is_true(0) # False
is_true(1) # True
is_true('1') # True
is_true('true') # True
is_true('false') # False
is_true('orange') # False
is_true('YeS') # True

is_false(0) # True
is_false('false') # True
is_false('true') # False
is_false(False) # True

Handling environmental variables in different formats

Using env_csv to support lists contained within an env var

The function env_csv() parses a CSV-like environment variable into a list

from privex.helpers import env_csv
import os
os.environ['EXAMPLE'] = "this, is, an,example "

env_csv('EXAMPLE', ['error'])
returns: ['this', 'is', 'an', 'example']
env_csv('NOEXIST', ['non-existent'])
returns: ['non-existent']

Using env_keyval to support dictionaries contained within an env var

The function env_keyval() parses an environment variable into a ordered list of tuple pairs, which can be
easily converted into a dictionary using dict().

from privex.helpers import env_keyval
import os
os.environ['EXAMPLE'] = "John: Doe , Jane : Doe, Aaron:Smith"

env_keyval('EXAMPLE')
returns: [('John', 'Doe'), ('Jane', 'Doe'), ('Aaron', 'Smith')]
env_keyval('NOEXIST', {})
returns: {}

	lockmgr.lockmgr

	This is the main module file for `Django Lock Manager`_ (django-lockmgr) and contains lock management functions/classes.

	lockmgr.models

	

	lockmgr.management.commands

	

LockMgrConfig

	
class lockmgr.apps.LockMgrConfig(app_name, app_module)

	
	
__init__(app_name, app_module)

	Initialize self. See help(type(self)) for accurate signature.

Methods

Methods

Attributes

Attributes

	name

	

	version

	

name

	
LockMgrConfig.name = 'lockmgr'

	

version

	
LockMgrConfig.version = '2.0.0'

	

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Privex Django Lock Manager (django-lockmgr) documentation

 		
 Installing Django Lock Manager

 		
 Download and install from PyPi using pipenv / pip (recommended)

 		
 (Alternative) Manual install from Git

 		
 Post-installation

 		
 Using Django Lock Manager

 		
 Using the context manager LockMgr (recommended)

 		
 Using the raw module lock management functions

 		
 Extra documentation

 		
 API Docs (lockmgr.lockmgr)

 		
 clean_locks

 		
 get_lock

 		
 is_locked

 		
 renew_lock

 		
 set_lock

 		
 unlock

 		
 LockMgr

 		
 Methods

 		
 Database Models (lockmgr.models)

 		
 default_lock_expiry

 		
 Lock

 		
 Methods

 		
 Attributes

 		
 Django Management Commands

 		
 clear_lock

 		
 Command

 		
 list_locks

 		
 Command

 		
 reset_locks

 		
 Command

 		
 set_lock

 		
 Command

 		
 How to use the unit tests

 		
 Testing pre-requisites

 		
 Running the tests via Django Test Runner / Django-Nose

 		
 Unit Test List / Overview

 		
 tests.test_lockmgr

 		
 TestLockMgrModule

 		
 tests.test_lockmgr_class

 		
 TestLockMgrClass

 		
 tests.test_renew

 		
 TestLockRenew

_images/repl_help.png
000 6 ./manage.py shell (less)

Help on function get_lock in module lockmgr.lockmgr:

get_lock(name, expires: Union[int, NoneType] = 600, locked_by: str = None, lock_process: int = None) —> lockmgr.models.Lock
READ THIS: It's best to use :class: .LockMgr® as it automatically handles locking and unlocking using " ‘with™".

Calls :py:func:'.clean_locks"™ to remove any expired locks, checks for any existing locks using a FOR UPDATE
transaction, then attempts to obtain a lock using the Lock model :class: payments.models.Lock"

If ““name’" is already locked, then :class: .Locked® will be raised.

Otherwise, if it was successfully locked, a :class: payments.models.Lock’™ object for the requested lock name
will be returned.

Usage:

>>> try: # Obtain a lock on 'mylock', with an automatic expiry of 6@ seconds.
mylock = get_lock('mylock', 60)
print('Successfully locked mylock"')
except Locked as e:
print('Failed to lock. Reason: ', type(e), str(e))
finally: # Regardless of whether there was an exception or not, remember to remove the lock!
print('Removing lock on "mylock"')
unlock(mylock)

:param str name: A unique name to identify your lock
:param int expires: (Default: 600 sec) How long before this lock is considered stale and forcefully released?

Set this to '@ for a lock which will never expire (must manually call :func: .unlock)
:param str locked_by: (Default: system hostname) What server/app is trying to obtain this lock?
rparam int lock_process: (Optional) The process ID requesting the lock

:raises Locked: If the requested lock "‘name’ " 1is already locked elsewhere, :class: .Locked’ will be raised

:return Lock lock: If successfully locked, will return the :class: payments.models.Lock’ of the requested lock.

22 22

(END)
14%

E56 GB ® 22/11,1:39 am 3 less « Python « zsh ¥ master = o

